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A canonical decomposition ofH-self-similar Lévy symmetrica-stable processes is presented. The resulting
components completely described by both deterministic kernels and the corresponding stochastic integral with
respect to the Lévy symmetrica-stable motion are shown to be related to the dissipative and conservative parts
of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in
the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity
is implemented for four real empirical time series recorded from different physical systems: an ionic current
flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal
recorded during seismic Earth activity, and foreign exchange rate daily returns.
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I. INTRODUCTION

The importance of Lévy stable distributions or processes
in physics and related areas has long been knownf1–7g.
They are also increasingly important in many other fields of
application. Consequently, a general trend nowadays is to put
Lévy stable type anomalous diffusion on a similar footing
with Brownian diffusionf8–18g. However, in what concerns
our understanding of a structure of their self-similarity, the
situation is vastly different for the two types of models.

At the level of the Langevin equation the Lévy motion is
a generalization of the Brownian one which describes the
motion of small macroscopic particles in a liquidsor a gasd
experiencing unbalanced bombardments due to surrounding
atoms. The Brownian motion mimics the influence of the
“bath” of surrounding molecules in terms of a mean-field,
time-dependent stochastic force which is commonly assumed
to be white Gaussian noise. That postulate is compatible with
the assumption of a short correlation time of fluctuations
smuch shorter than the time scale of the macroscopic motiond
and the assumption of weak interactions with the bath. In
contrast, the Lévy motions describe results of strong colli-
sions between the test particle and the surrounding environ-
ment, and hence, lead to models of the bath that go beyond
the standard “close-to-equilibrium” Gaussian description.
The already observed unusual statistical properties of sys-
tems driven by them serve as a challenge for generalizations
of thermostatics trying to explain the non-Gibbsian phenom-
enaf2,4,5g.

The notion of self-similarity, originally coined by Man-
delbrot, has been introduced in 1962 by Lampertif19g. His-
torically oldest approach to self-similarity has been proposed
by Kolmogorov in 1940, who introduced fractional Brown-
ian motion, which is a Gaussian self-similar process with
stationary increments. For the details see Mandelbrot and

Van Nessf20g and references therein. The study of non-
Gaussian self-similar processes with stationary increments
was initiated by Taqquf21g. He addressed the question what
type of limiting distributions is expected to appear if the
stationary sequence has a stronger dependence violating the
validity of central limit theorem, and further developed a
non-Gaussian limit theorem originated by Rosenblatt. On the
other hand, the works of Sinai and Dobrushin in the field of
statistical physics appeared independently in the same time
f22g. Since the self-similar processes such as Brownian, frac-
tional Brownian, Lévy stable and fractional Lévy stable mo-
tion are stochastic processes that are invariant in distribution
under suitable scaling of time and space, so these processes
are closely related to the notion of renormalization in statis-
tical and high energy physics.

A significant difference between Gaussian and Lévy
stable distributions is that the latter have heavy tails and their
variance is infinite. This means that much larger jumps or
flights are possible for Lévy stable distributions, which
causes their variance to diverge. Since many natural pro-
cesses follow Lévy stable distributionsf2,23–25g, the neces-
sity of modeling physical phenomena with heavy tailed dis-
tributions is dramatically increasing in many fields of
physics. In this paper we employ ergodic theory foundation
of ubiquity of Lévy stable self-similar processes in physics
and provide a catalog of models for anomalous diffusion
f2–6g. To be more precise we develop tools for study of
diffusion processes described by the following Langevin-
type stochastic differential equation driven by Lévy stable
noise:

dXt = bst,Xtddt + sst,XtddZt
a, s1d

wheredZt
a stands for the increments of Lévya-stable motion

Zt
a, 0,aø2; seef25g.

Section II starts with time and scale invariance of self-
similar processes. Two basic examples: fractional Brownian
motion and fractional Lévy stable motion are described there
in the form of stochastic integrals. Also a connection with*Electronic address: aleksander.weron@pwr.wroc.pl
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long-memory or long-range dependence is established. In
Sec. III we provide a theoretical justification of the recently
proposed Burnecki, Mercik, Weron, and WeronsBMW2d
computer testf26g introduced to detect the origins of the
self-similarity feature of a particular model. Thus it follows
that the estimated index of self-similarity can reflect a long-
memory effect or infinite variance impact of the process. In
Sec. IV we discuss the integral representation of Lévy stable
self-similar processes in the language of nonsingular flows
and exploit the connection with the Hopf decomposition.
This gives a natural physical interpretation of the Burnecki,
Rosinski, and WeronsBRWd decomposition introduced in
f27g. We identify the three components of the BRW decom-
position with mixed fractional motion, harmonizable and
evanescent processes, respectively. The first process corre-
sponds to a dissipative part and two others to a conservative
part of the dynamics given by the nonsingular flow repre-
senting a Lévy stable and self-similar process. A number of
special examples is discussed in details in order to demon-
strate that the proposed integral representation is user-
friendly and could provide new insights into the mechanism
underlying a range of natural phenomena. Finally, in Sec. V
the obtained results are applied to determine basic features of
an empirical data series. We demonstrate this by studying
four empirical time series recorded from different physical
systems: an ionic current flow through a single channel in a
biological membrane, an energy of solar flares, a seismic
electric signal recorded during seismic Earth activity, and
foreign exchangesFXd rate daily returns.

II. SELF-SIMILARITY OF FRACTIONAL LÉVY
STABLE MOTION

Over the past decade there has been much interest in the
asymptotic behavior of dynamical systems, in particular in
detecting self-similar character of these systems and testing
for the existence of so-called “long memory” or “long-range
dependence.” It turns out that the self-similar processes are
very important mathematical objects which can be used to
model many physical, geophysical, hydrological, economi-
cal, and biological phenomenassee f16–18,22,28–38g and
references thereind. The mathematical constructions were
successfully used to model diffusion on fractals, currency
and stock market prices, ionic current flow through a single
channel in a biological membrane, turbulences, communica-
tion and many others. Since the self-similarity property was
observed in many real phenomena there is a need to build
efficient estimators of the self-similarity indexf30,31,38g.

A self-similar stochastic process is a process that is invari-
ant under suitable translations of time and scale. We mention
that the self-similarity is described by a real positive param-
eterH.0 called self-similarity index which provides infor-
mation on the investigated time series structure, correlations
and fractal properties. For example, the Brownian motion is
self-similar with H=1/2; it has nomemory and its incre-
ments have finite variance.

It is well known that if a process has purely random in-
crements with infinite variance then the process can be self-
similar with index of self-similarity different from 1/2. An

example ofH=1/a self-similar process is the Lévy stable
motion with stationary and independent, identically distrib-
uted increments with symmetrica-stable distribution
f25,37g. When one applies to that process theR/S analysis,
the obtained Hurst exponent equals 1/2 since the estimator
shows a lack of memoryf26g. Thus the second origin of the
self-similarity is the process’ increments distribution what is,
to our knowledge, neglected by many authors. There is an-
other example of even more complicated process—the frac-
tional Lévy stable motionf25,37g which has the memory
property and increments with infinite variance. In this case
the self-similarity index carries information on both, on long-
memory and increments distribution. Hence studying the
process’ self-similarity one needs to have robust statistical
tools and clear algorithms to extract information on both of
the factors. A simple hint is as follows: if one wants to in-
vestigate the self-similarity property, one needs to distinguish
between the long-memory property and the process’ incre-
ments distribution properties. Otherwise a wrong conclusion
can be drawn. Inf26g we provided an explicit algorithm
distinguishing between the origins of the self-similarity in
the case of a given time series on the base of a simple simu-
lation experimentscomputer testd.

A. Self-similar processes

As we mentioned above, the self-similar processes are the
ones that are invariant under suitable translations of time and
scale. They are important in probability theory because of
their connection to limit theorems and they are of great in-
terest in modeling heavy-tailed and long-memory phenom-
ena. In fact, Lamperti used the term “semi-stable” in order to
underline that the role of self-similar processes among sto-
chastic processes is analogous to the role of stable distribu-
tions among all distributions.

A processhXstdjtù0 is called self-similarf19g if for some
H.0,

Xsatd
d
=aHXstd for everya . 0, s2d

where
d
5 denotes equality of all finite-dimensional distribu-

tions of the processes on the left and right. The processXstd
is also called anH-self-similar process and the parameterH
is called the self-similarity index or exponent. If we interpret
t as “time” andXstd as “space” then Eq.s2d tells us that every
change of time scalea.0 corresponds to a change of space
scaleaH. The biggerH, the more dramatic is the change of
the space coordinate.

Notice that Eq.s2d, indeed, means a “scale-invariance” of
the finite-dimensional distributions ofXstd. This property of
a self-similar process does not imply the same for the sample
paths. Therefore, pictures trying to explain self-similarity by
some zooming in or out on one sample path, are by definition
misleading. Why? In contrast to the deterministic self-
similarity, the self-similarity of stochastic processes does not
mean that the same picture repeats itself exactly as we go
closer. It is rather the general impression that remains the
same. A convenient mathematical tool to observe self-
similarity is provided by so-called quantile linesf25g.
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Many of the interesting self-similar processes have sta-
tionary increments. A processhXstdjtù0 is said to have sta-
tionary increments if for anyb.0,

fXst + bd − Xsbdg
d
=fXstd − Xs0dg. s3d

B. Fractional Brownian motion

The fractional Brownian motionsFBMd hBHstdjtù0 has the
integral representation

BHstd =E
−`

`

fst − ud+
H−1/2 − s− ud+

H−1/2gdBsud, s4d

wherex+=maxsx,0d andBsud is a Brownian motionsBMd. It
is H-self-similar with stationary increments and it is the only
Gaussian process with such properties for 0,H,1 f37g.
The classic Brownian motionBstd, used by Einstein and
Smoluchowski, is simply a special case of the fractional
Brownian motion whenH=1/2.

In modeling of long-memory phenomena, the stationary
increments ofH-self-similar processes are of special interest
since anyH-self-similar process with stationary increments
hXstdjtPR induces a stationary sequencehYjj jPZ, where Yj

=Xs j +1d−Xs jd; j = . . . ,−1,0,1, . . . . ThesequenceYj corre-
sponding to the fractional Brownian motion is called frac-
tional Gaussian noisesFGNd f26g. It is called a standard
fractional Gaussian noise if varYj =1 for every j PZ.

The fractional Gaussian noise has some remarkable prop-
erties. If H=1/2, then its autocovariance functionrskd
=Rs0,kd=0 for kÞ0 and hence it is the sequence of inde-
pendent identically distributedsi.i.d.d Gaussian random vari-
ables. The situation is quite different whenHÞ1/2, namely
the Yj’s are dependent and the time series has the autocova-
riance function of the form

rskd , varY1Hs2H − 1dk2H−2, ask → `. s5d

The autocovariance functionrskd tends to 0 ask→` for all
0,H,1, but when 1/2,H,1 it tends to zero so slowly
that the sumok=−`

` rskd diverges. We say that in this case the
increment process exhibits long-memory or “long-range de-
pendence”f30g. Moreover, formulas5d by the Wiener Taub-
erian theoremsseef39g, Chap. V 2d implies that the spectral
density hsld of the stationary process FGN has a pole at
zero. A phenomenon often referred to as “1/f noise.”

If 0 ,H,1/2, thenok=−`
` rskd=0 and the spectral density

tends to zero asulu→0. We say in that case that the sequence
displays a short-memory. Furthermore, as the coefficient
Hs2H−1d is negative, thers jd’s are negative for all largej , a
behavior referred to as “negative dependence.”

C. Fractional Lévy stable motion

The most commonly used extension of the fractional
Brownian motion to thea-stable case is the fractional Lévy
stable motionsFLSMd f40–42g. The processhZa

HstdjtPR is
defined by the following integral representation

Za
Hstd =E

−`

`

fst − ud+
H−1/a − s− ud+

H−1/agdZasud, s6d

where Zasud is a symmetric Lévya-stable motionsLSMd
f25,37g. The integral is well defined for 0,H,1 and 0
,aø2 as a weighted average of the Lévy stable motion
Zasud over the infinite past with the weight given by the
above integral kernel denoted byf tsud.

The processZa
Hstd is H-self-similar and has stationary in-

crementsf40g. Let us observe thatH-self-similarity follows
from the above integral representation and the fact that the
kernel f tsud is d-self-similar withd=H−1/a, when the inte-
grator Zasud is 1/a-self-similar. This implies the following
important relation:

H = d +
1

a
. s7d

The representations6d of FLSM is similar to the represen-
tation s4d of the fractional Brownian motion. Therefore,
FLSM reduces to the fractional Brownian motion if one sets
a=2. When we putH=1/a we obtain the Lévya-stable
motion which is an extension of the Brownian motion to the
a-stable case. We note, that contrary to the Gaussian case
sa=2d the Lévya-stable motions0,a,2d is not the only
1/a-self-similar Lévya-stable process with stationary incre-
mentssthis is true for 0,a,1 onlyd.

The increment process corresponding to the fractional
Lévy stable process is called a fractional stable noisesFSNd.
By analogy with the casea=2, we say that FSN has the
long-range dependence whenH.1/a and the negative de-
pendence whenH,1/a. If H=1/a the increments of FLSM
are i.i.d. symmetrica-stable variables. The asymptotic de-
pendence structure of the fractional Brownian noise is stud-
ied by virtue of the autocovariance function. Since in the
a-stable case the second moment is infinite one has to use
another measure of dependence, e.g., the codifferencets jd
which equals the covariance whena=2 f37g. For most, but
not all, values ofa andH, t decreases asjaH−a for large j .
This is analogous to the behavior of the autocovariance func-
tion in the Gaussian casea=2. Finally, we note that there is
no long-range dependence when 0,aø1 becauseH is con-
strained to lie in the intervals0, 1d.

For simulations of the above self-similar processes we
need specific computer generators. Two of such algorithms
for generation of fractional Gaussian noisesFGNd and frac-
tional stable noisesFSNd are described in detail inf26g
and f43g.

III. TESTING OF SELF-SIMILARITY

In this section we use the absolute valuesAV d method for
estimation of the self-similarity indexH. The method is
based on calculating mean value from the process realiza-
tions and studying its scaling with a sample lengthf31g. A
time series of lengthN one divides into subseries of lengthm
and calculates the first absolute moment
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MAV
smd =

1

N/mo
k=1

N/m

uXsmdskd − kXlu, s8d

whereXsmd is an mth subseries andkXl is the overall series
mean.

The obtained statistics scales with the window size and
the absolute value exponentA equalsHAV −1, whereHAV is
the self-similarity index

MAV
smd ~ mHAV−1. s9d

Notice, that this estimator gives information on the self-
similarity index. If the variance of the time series is infinite
the estimator also works correctly, so it can be used to inves-
tigate, for example, the Lévy stable motion.

To investigate memory of a studied process we apply the
estimator to an original data set obtained as a realization of
the process given by Eq.s6d and to the surrogate data. Sur-
rogate data refers to data that preserve certain linear statistic
properties of the experimental time series, without the deter-
ministic componentf44g. It is commonly used to determine
the memory of a process by means of the local dispersion
and nonlinear prediction methods. The surrogate data can be
obtained by several different waysf44,45g. In this paper we
obtain it by random shuffling of the original data positions.

According to f26g we have the following BMW2 com-
puter test.

If the self-similarity results from the process memory only
se.g., fractional Brownian motiond then the values of the
applied estimator should change to 1/2 for the surrogate
data independently on the initial values.
If the self-similarity results only from the process’ incre-
ments infinite variancese.g., Lévy stable motiond then the
estimator values should be the same for the original and
surrogate data.
The self-similarity resulting from both originsse.g., frac-
tional Lévy stable motiond should be observed as a partial
change in the estimators values.

In order to justify the above test the behavior of the esti-
mator was investigated on simulated time series. The calcu-
lations were performed for two cases: fractional Lévy stable
motion fora=1.8 and the self-similarity indexH taking val-
uesh0.6, 0.7, 0.8, 0.90j sFig. 1 depicts sample paths of cor-
responding fractional stable noises forH=0.6 andH=0.9d
and Lévy stable motion with the self-similarity indexH tak-
ing valuesh0.6, 0.7, 0.8, 0.9j. The index of stabilitya in the
latter case ranges froma=10/9 toa=5/3.

We note that in order to simulate fractional Lévy stable
motion we directly applied its integral representation given
by Eq. s18d for t=1/100,2/100, . . . ,9999/100,100s10000
observationsd. The fractional Lévy stable motion was also
considered and simulated inf43g.

The AV estimator calculated for every given case of the
fractional Lévy stable motion and Lévy motion is presented
in Fig. 2. The AV estimator gives information on both, the
memory and distribution of the investigated process. The
values of the estimator should form the lineA=H−1. It is
true in both studied cases, cf. circles and dashed lines in Fig.
2. The estimator values for the surrogate data obtained from

fractional Lévy stable motion and Lévy motion are markedly
different. In the case of the fractional Lévy stable motion
values of the estimator are close to 1/1.8−1,−0.44, cf. plus
signs and dotted line in Fig. 2. The values obtained for the
Lévy stable motion do not change after shuffling and are
pretty close to the value 1 subtracted from the self-similarity
index valueH, cf. plus signs and dashed line in Fig. 2.

IV. RELATION TO THE BRW DECOMPOSITION

In this section we exploit the connection between theory
of self-similar Lévy stable processes and ergodic theory of
nonsingular flows. We use the integral representation of anH
self-similar sSSd symmetrica-stablesSaSd processhXtjt.0

of the form

Xt =E
S

ftsuddZasud, t . 0, s10d

where the kernelf tsud= tHfatsudfsftsuddgmtsud1/a is repre-
sented by means of the tools used in ergodic theoryf46g.
Here hftjt.0 is a nonsingular multiplicative flow on the

FIG. 1. A sample path of the fractional Lévy stable noise for
stop paneld H=0.6 anda=1/1.8, andsbottom paneld H=0.9 and
a=1/1.8.
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phase spacesS,md, hatjt.0 is a cocycle for this flow taking
values inh−1,1j, mt=d(msftd) /dm and f is a-integrable with
respect tom f27g.

The stochastic processXt defined in Eq.s10d can be inter-
preted, similarly as in Sec. II, as a weighted average of the
Lévy stable motionZastd over the infinite past with the
weight given by the kernelf t. For the exact definition we
refer the interested reader tof25,37g. Let us point out that the
stochastic integrals10d is equivalent to the diffusion without
drift si.e., b=0d and with diffusion coefficientss= f td; see
Eq. s1d.

The self-similarity property of the above integral with pa-
rameterH, follows directly from 1/a-self-similarity of the
processZastd and the following property of the kernel

fctsud = cH−1/af tSu

c
D . s11d

It was demonstrated inf27g that every SaS self-similar
processhXtjt.0 admits a unique BRW decomposition into
three independent parts

hXtjt.0

d
=hXt

s1djt.0 + hXt
s2djt.0 + hXt

s3djt.0, s12d

where the first process on the right-hand side is a mixed
fractional motionsMFMd, the second is harmonizable, and
the third one is anH SS evanescent process.

The Hopf decomposition in ergodic theory of the phase
spaceSof the integral representations10d into invariant parts
C and D, such that the flowft is conservative onC and
dissipative onD, generates a decomposition ofhXtjt.0 into
two independent SaS H SS processeshXt

Cjt.0 and hXt
Djt.0.

The classhXt
Cjt.0 generated by conservative flows consists of

harmonizable processeshXt
s2djt.0 and evanescent processes

hXt
s3djt.0. The processhXt

Djt.0 is a MFM and one can choose
a minimal representation ofhXt

Djt.0 of the form s14d below.
Furthermore,hXt

Djt.0 is a fractional motionsFMd if and only
if hftjt.0 restricted toD is ergodic. This is a promising link
between the BRW decomposition of any SaS H SS process
and the theory of dynamical systems in statistical physics.
The ergodic theory of SaS stationary processes is presented
in f25g. See alsof42g for the one-to-one correspondence be-
tween SaS self-similar and stationary processes.

The simplestH SS SaS process is obtained from a kernel
of the form

f tssd = tH−1/afSs

t
D, t,s. 0, s13d

where f is a-integrable with respect to the Lebesgue mea-
sure. A SaS process with such representation is called the
fractional motion. A superposition of independent FM pro-
cesses of types13d is called the mixed fractional motion and
it has the form

gtsw,ud = tH−1/agSw,
u

t
D, t . 0. s14d

We will give a few examples of FM and MFM processes.
We start fromd-dimensional case.

Model 1. For f PLasRdd, let

f tssd = tH−d/afSs

t
D, sP Rd, t . 0, s15d

andM be a SaS random measure onRd with the Lebesgue
control measure. It is easy to check that a SaS process
hXtjt.0 with such representation isH SS. We will show that
hXtjt.0 is a MFM. Indeed, letW=Sd be the unit sphere inRd

equipped with the uniform probability measuren and let
gsw,ud=scdu

d−1d1/afsuwd, sw,udPSd3 s0,`d where cd

=2pd/2/Gsd/2d is the surface area ofSd. Using polar coordi-
nates, we get for everya1, . . . ,anPR, t1, . . . ,tn.0,

FIG. 2. Values of the AV exponentA=HAV −1 for the original
time seriesscircled and the surrogate datasplus signd of stop paneld
the fractional Lévy stable noise andsbottom paneld the Lévy stable
noise.
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E
Rd

uo aj f tj
ssduads

= cdE
Sd

E
0

` Uo ajtj
H−d/afSuw

tj
DUa

ud−1dunsdwd

=E
Sd

E
0

` Uo ajtj
H−1/agSw,

u

tj
DUa

dunsdwd, s16d

which proves the claim.
Comparing the kernel from the above example with the

general forms10d we get thatS=Rd\ h0j, ftssd= t−1s, f1ssd
= fssd, and d(msftd) /dm= t−d. The following well-knownH
SS processes are special cases of the above example.

Model 2. Let 1,a,2 andH=1/a. Then a log-fractional
SaS motionf48g hXtjt.0 is defined by the kernel

f tssd = logut/s− 1u s17d

ssee Fig. 3, top leftd.

Model 3. Let 0,H,1, 0,a,2 and HÞ1/a. Put b
=H−1/a. Then a fractional SaS motionf49g hXtjt.0 is de-
fined by the kernel

f tssd = Ifs, 0gfst − sdb − s− sdbg + If0 , s, tgst − sdb

s18d

ssee Fig. 3, top rightd, where If·g stands for the indicator
function of thes-variable.

We remark only that the Lamperti transformationf42g
maps FM’s onto moving average processes and MFM’s onto
mixed moving averagesf50g. Considering above examples it
seems that MFM’s appear more naturally than FM’s. This is
quite opposite to the relation between mixed and the usual
moving averages. It is clear that a Lévy stable process may
have many integral representations with different kernels de-
fined on various measure spaces. However, we can identify
one property, common to all such representations, which
characterizes MFM’s. LethXtjt.0 be a SaS H SS process
with an arbitrary representations10d. Then X is a MFM if
and only if

FIG. 3. The kernel of the integral representation ofstop leftd a log-fractional SaS motion andstop rightd a fractional SaS motion for
H−1/a=0.1; sbottom leftd the real part of the kernel of the integral representation of the complex-valued SaS harmonizable process for
H=0.8 andH−1/a=0.1 andsbottom rightd, the kernel of the integral representation of the evanescent process.
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E
0

`

t−aH−1uf tssduadt , ` m − a.e. s19d

Observe first that this condition is equivalent to
e−`

` e−aHtufetssduadt,`m−a.e. By f47g and the Lamperti
transformation this gives the result.

The class generated by conservative flows consists of har-
monizable processes and processes of a third kindsevanes-
centd. An H SS SaS processhXtjt.0 is said to be harmoniz-
able if its kernel satisfies the condition:f t1t2

ssdf1ssd
= f t1

ssdf t2
ssd for t1,t2.0, seef27g.

A stochastic process whose minimal representations10d
contains a conservative flow without fixed points is called
evanescent. This class is not well understood at present. The
following result in f27g is useful to verify whether or not a
process is evanescent. LethXtjt.0 be a SaS H SS process
with an arbitrary representations10d. ThenhXtjt.0 is evanes-
cent if and only if mhsPS:e0

`t−aH−1uf tssduadt,`j=0 and
mhsPS: f t1t2

ssdf1ssd= f t1
ssdf t2

ssd for t1,t2.0j=0.
Finally we give examples of the harmonizable and eva-

nescent processes.
Model 4. Let

f tssd = tH+isexpsisd − 1

is
usu−sH−1+1/ad s20d

ssee Fig. 3, bottom leftd. It is easy to check that stochastic
process with such kernel is harmonizable.

Model 5. Let

f tssd = If0 , s, 1gtH cosspilog t + sid, s21d

where ixi denotes the largest integer not exceedingx ssee
Fig. 3, bottom rightd. ThenXstd defined by the above kernel
does not have a corresponding harmonizable nor mixed mov-
ing average component, so provides an example of an eva-
nescent component.

V. EMPIRICAL EVIDENCE

The above formalism can be easily applied to determine
basic features of an empirical data series. Below we demon-
strate this by studying four empirical time series recorded
from different physical systems: an ionic current flow
through a single channel in a biological membrane, an en-
ergy of solar flares, a seismic electric signal recorded during
seismic Earth activity, and FX rate daily returns.

The ionic current was recorded from cell attached patches
of adult locust sSchistocerca gregariad extensior tibiae
muscle fibresf32,51,52g. The potassium currentssee Fig. 4d
through a high conductance locust potassium channelsBK
channeld was obtained by the patch clamp technique with
sampling frequency 10 kHz and at a voltage of 100 mV. The
sample presents a time series, consisting of 250 000 points
and covering, therefore, 25 s of recording. The error of mea-
surements of ionic current is equal to 1 pA.

The solar flares energy data were recorded by UHURU
satellite. The captured energy was transmitted by X rays
emitted during blasts on a solar surface from the 1st of Janu-
ary 1997 to the 31st of August 2002f53g. The time of the

blast was recorded with an accuracy of 1 min and the relative
error of the energy measurement reads 10−2. The total ana-
lyzed sample consists of moments and energy of 13 015
flares. A part of the time series is presented in Fig. 4.

The seismic signal is a record of an electrical field of the
Earth surface called SESsSeismic Electric Signald f54g. The
data were recorded on the 18th of April 1995 in Grevena-
Kozani in Greece at the sampling frequency 1 Hz. The time
series consists of 2 201 observations covering about 37 min.
The measurement error reads 10 nV/km. The data are espe-
cially interesting since the SES activity usually precedes an
earthquakef54g. The time series is presented in Fig. 4.

The USD/CHF FX rate was recorded from 1985-05-20 to
1991-04-12 with daily resolution. The data primarily comes
from a set of financial data released by Olsen & Associates
for the Second International Conference on High Frequency
Data in Finance, Zürich, April 1–3, 1998. These data sets are
quotations of foreign currencies and metals available from
international vendors like Reuters, Knight-Ridder and Teler-
ate. The analyzed time series consists of 1 480 observations
and the daily FX rate changes are presented in Fig. 4.

The procedure presented in Sec. IIIssee alsof26gd was
applied to the above time series. The obtained values of the
parameters are listed in Table I.

Comparing the values of the different estimators for the
original data series and for the surrogate data one can esti-
mate the components of the self-similarity index correspond-
ing to the memory of the time seriessdd and to the tails
properties of the time series values distributionsad. The val-
ues of the components are presented in Table II. Let us ob-
serve that only for the solar flares data the self-similarity
results from both origins suggesting that proper model
should be based on the fractional Lévy stable motion with
H,0.86 anda,1.45, see BMW2 computer test in Sec. III.

It is clearly seen that the procedure provides a decompo-
sition of the self-similarity index into the two components
representing memory and the tails of the process; see for-
mula s7d. Nevertheless, it is not clear how to apply the algo-
rithm for the integral kernels11d estimation. The difficulty
mainly arises from a lack of any additional limitations for the
class of functions to which can belong the kernel. So, one
cannot reduce the problem of finding the kernel to a param-
eter or parameters estimation. Instead, one has to deal with a
nonparametric estimation problem. However, having thed
and a values one can already correctly classify the studied
time series, identify the processZastd in the integrals10d and
reduce the class of possible kernels. More studies are needed
to elucidate the recognition of the kernel.

VI. CONCLUDING REMARKS

In this paper we demonstrate that all self-similar models
driven by Lévy stable noise are completely described by for-
mula s10d in the form of a stochastic integral with respect to
the Lévy symmetric stable motion and a deterministic kernel
f t. The classical Hopf decomposition in ergodic theory im-
plies decompositions12d into three independent components:
MFM, harmonizable and evanescent. The first component
corresponds to conservative dynamics, when two others to
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dissipative dynamics. Next, we provide the five typical
H-self-similar models and characterize the three possible
components in the language of their deterministic kernelsf t.

On the level of observed physical time series this leads to
a challenging open problem how to see the “shape” of the
self-similarity from the data? To be more precise, how to
determine the type of the model from the given time series
data. Details of these ideas are, however, the subject of the
current work and are beyond the scope of this paper. If one
knows how to recognize the form of the kernelf t from the
datasby a shape recognition procedured, then from our result
it follows that this time series corresponds to a specific part
of the BRW decomposition. For instance, MFM is identified
if and only if the kernelf t satisfies conditions19d.

The main findings is that always a deterministic kernel
determines the index of self-similarityH via formula s11d.
This provides a catalog of all possible self-similar models for
anomalous diffusion driven by Lévy stable noise. We also
study an explicit algorithm distinguishing between the ori-

TABLE I. Values of the Hurst and DFA exponents and the self-
similarity indexHAV for the original time series and the surrogate
data for the four different data sets.

Data set Hurst DFA HAV

Original time series

Ionic current 0.84±0.08 0.89±0.07 0.88±0.08

Solar flares 0.69±0.05 0.68±0.07 0.86±0.06

SES 0.92±0.06 0.94±0.10 0.89±0.07

FX rate 0.62±0.10 0.51±0.05 0.57±0.08

Surrogate data

Ionic current 0.54±0.05 0.50±0.04 0.48±0.05

Solar flares 0.52±0.04 0.48±0.05 0.69±0.06

SES 0.56±0.07 0.48±0.07 0.49±0.07

FX rate 0.60±0.10 0.50±0.05 0.54±0.07

FIG. 4. A part of patch clamp recording of the single BK channel ionic currentstop leftd; a part of solar flares energy time seriesstop
rightd; seismic electric signal recorded on the 18th of April 1995 in Grevena-Kozani in Greecesbottom leftd; and the USD/CHF FX rate daily
changes from 1985-05-20 to 1991-04-12sbottom rightd.
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gins of the self-similarity of a given time series on the base
of the BMW2 computer testf26g. It turns out that it suffices
to compare the behavior of AV estimator ofH for the original
time series and the surrogate data. We provide here a theo-
retical justification of this algorithm for self-similar models

using general formulas10d. This is illustrated in Sec. V for
four sets of empirical data recorded from different physical
systems.
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