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Complete description of all self-similar models driven by Lévy stable noise

Aleksander Werch and Krzysztof Burnecki
Hugo Steinhaus Center, Institute of Mathematics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Szymon Mercik and Karina Weron
Institute of Physics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
(Received 5 November 2003; revised manuscript received 6 May 2004; published 12 January 2005

A canonical decomposition dfi-self-similar Lévy symmetrier-stable processes is presented. The resulting
components completely described by both deterministic kernels and the corresponding stochastic integral with
respect to the Lévy symmetrie-stable motion are shown to be related to the dissipative and conservative parts
of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in
the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity
is implemented for four real empirical time series recorded from different physical systems: an ionic current
flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal
recorded during seismic Earth activity, and foreign exchange rate daily returns.
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I. INTRODUCTION Van Ness[20] and references therein. The study of non-

. o Gaussian self-similar processes with stationary increments
~ The importance of Lévy stable distributions or processegyas initiated by Tagqli21]. He addressed the question what
in physics and related areas has long been knfi7].  tyne of limiting distributions is expected to appear if the
They are also increasingly important in many other fields ofstationary sequence has a stronger dependence violating the
application. Consequently, a general trend nowadays is t0 pygidity of central limit theorem, and further developed a
Lévy stable type anomalous diffusion on a similar footing non-Gaussian limit theorem originated by Rosenblatt. On the
with Brownian diffusion[8—18. However, in what concerns sther hand, the works of Sinai and Dobrushin in the field of
our understanding of a structure of their self-similarity, thegtatistical physics appeared independently in the same time
situation is vastly different for the two types of models.  [22]. Since the self-similar processes such as Brownian, frac-

At the level of the Langevin equation the Lévy motion is tional Brownian, Lévy stable and fractional Lévy stable mo-
a generalization of the Brownian one which describes thgjon are stochastic processes that are invariant in distribution
motion of small macroscopic particles in a liquidr 2 ga$  ynder suitable scaling of time and space, so these processes
experiencing unbalanced bombardments due to surroundinge closely related to the notion of renormalization in statis-
atoms. The Brownian motion mimics the influence of theijca| and high energy physics.
“bath” of surrounding molecules in terms of a mean-field, A sjgnificant difference between Gaussian and Lévy
time-dependent stochastic force which is commonly assumegtape distributions is that the latter have heavy tails and their
to be white Gaussian noise. That postulate is compatible Wity 5riance is infinite. This means that much larger jumps or
the assumption of a short correlation time of quctuationsﬂi(‘:,htS are possible for Lévy stable distributions, which
(mUCh shorter than the time scale of the maCfOSCOpiC m):)tioncauses their variance to diverge' Since many natural pro-
and the assumption of weak interactions with the bath. Innagses follow Lévy stable distributiof@,23—23, the neces-
contrast, the Lévy motions describe results of strong colli—sity of modeling physical phenomena with heavy tailed dis-
sions between the test particle and the surrounding environyiputions is dramatically increasing in many fields of
ment, and hence, lead to models of the bath that go beyonghysics. In this paper we employ ergodic theory foundation
the standard “close-to-equilibrium” Gaussian descriptionof ypiquity of Lévy stable self-similar processes in physics
The already observed unusual statistical properties of sysy,q provide a catalog of models for anomalous diffusion
tems driven by them serve as a challenge for generalizatiorIQ_B]_ To be more precise we develop tools for study of
of thermostatics trying to explain the non-Gibbsian phenomqiffusion processes described by the following Langevin-

ena[2,4.,9. o o _ type stochastic differential equation driven by Lévy stable
The notion of self-similarity, originally coined by Man- ngise:

delbrot, has been introduced in 1962 by Lampkk€l]. His- )

torically oldest approach to self-similarity has been proposed dX;=b(t,Xpdt + o(t,X)dZ, (1)
.by Kolm.ogorovlln 1940, who mtroduced. frgcﬂonal Brown- wheredZz" stands for the increments of Léwystable motion
ian motion, which is a Gaussian self-similar process with-« 0< a=2; see[25]

stationary increments. For the details see Mandelbrot and’ 'sq.tion 1 starts with time and scale invariance of self-

similar processes. Two basic examples: fractional Brownian
motion and fractional Lévy stable motion are described there
*Electronic address: aleksander.weron@pwr.wroc.pl in the form of stochastic integrals. Also a connection with
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long-memory or long-range dependence is established. laxample ofH=1/a self-similar process is the Lévy stable
Sec. Il we provide a theoretical justification of the recently motion with stationary and independent, identically distrib-
proposed Burnecki, Mercik, Weron, and Wer¢BMW?) uted increments with symmetrica-stable distribution
computer tes{26] introduced to detect the origins of the [25,37]. When one applies to that process fRES analysis,
self-similarity feature of a particular model. Thus it follows the obtained Hurst exponent equals 1/2 since the estimator
that the estimated index of self-similarity can reflect a long-shows a lack of memor}26]. Thus the second origin of the
memory effect or infinite variance impact of the process. Inself-similarity is the process’ increments distribution what is,
Sec. IV we discuss the integral representation of Lévy stabléo our knowledge, neglected by many authors. There is an-
self-similar processes in the language of nonsingular flowsther example of even more complicated process—the frac-
and exploit the connection with the Hopf decomposition.tional Lévy stable motior{25,37 which has the memory
This gives a natural physical interpretation of the Burnecki,property and increments with infinite variance. In this case
Rosinski, and WerorfBRW) decomposition introduced in the self-similarity index carries information on both, on long-
[27]. We identify the three components of the BRW decom-memory and increments distribution. Hence studying the
position with mixed fractional motion, harmonizable and process’ self-similarity one needs to have robust statistical
evanescent processes, respectively. The first process corteels and clear algorithms to extract information on both of
sponds to a dissipative part and two others to a conservative factors. A simple hint is as follows: if one wants to in-
part of the dynamics given by the nonsingular flow repre-vestigate the self-similarity property, one needs to distinguish
senting a Lévy stable and self-similar process. A number obetween the long-memory property and the process’ incre-
special examples is discussed in details in order to demonments distribution properties. Otherwise a wrong conclusion
strate that the proposed integral representation is usecan be drawn. If26] we provided an explicit algorithm
friendly and could provide new insights into the mechanismdistinguishing between the origins of the self-similarity in
underlying a range of natural phenomena. Finally, in Sec. \the case of a given time series on the base of a simple simu-
the obtained results are applied to determine basic features Htion experimentcomputer test

an empirical data series. We demonstrate this by studying

four empirical time series recorded from different physical A. Self-similar processes

systems: an ionic current flow through a single channel in a . o
biological membrane, an energy of solar flares, a seismic As we mentioned above, the self-similar processes are the

electric signal recorded during seismic Earth activity, and®nes that are invariant under suitable translations of time and
foreign exchangéFX) rate daily returns. scale. They are important in probability theory because of
their connection to limit theorems and they are of great in-

) terest in modeling heavy-tailed and long-memory phenom-
Il. SELF-SIMILARITY OF FRACTIONAL LEVY ena. In fact, Lamperti used the term “semi-stable” in order to
STABLE MOTION underline that the role of self-similar processes among sto-

. . chastic processes is analogous to the role of stable distribu-
Over the past decade there has been much interest in t Bns among all distributions.

asymptotic behavior of dynamical systems, in particular in - i ;

detecting self-similar character of these systems and testinlq >A Oprocess{x(t)}t>0 is called self-simila{19] if for some
for the existence of so-called “long memory” or “long-range '
dependence.” It turns out that the self-similar processes are
very important mathematical objects which can be used to
Lna?szlnan%?é O%Tg;;cs:]’ e%i?ﬁg%;g: I[,lgxtig),lzozg’g:g;%(;%réom| vyhere u denotes equality of all finite—d.imensional distribu-
references therejn The mathematical constructions were 10NS Of the processes on the left and right. The pro&ss

successfully used to model diffusion on fractals, currenc

d
X(at)=aX(t) for everya> 0, (2)

\S also called arH-self-similar process and the parameter

and stock market prices, ionic current flow through a singleS callgd the self-similarity index or exponent. If we interpret
channel in a biological membrane, turbulences, communica.as “time” andX(t) as “space” then Eq2) tells us that every
tion and many others. Since the self-similarity property wasthange of time scala>0 corresponds to a change of space
observed in many real phenomena there is a need to builécalea™. The biggerH, the more dramatic is the change of
efficient estimators of the self-similarity ind¢80,31,38. the space coordinate.

A self-similar stochastic process is a process that is invari- Notice that Eq(2), indeed, means a “scale-invariance” of
ant under suitable translations of time and scale. We mentiothe finite-dimensional distributions o€(t). This property of
that the self-similarity is described by a real positive param-a self-similar process does not imply the same for the sample
eterH >0 called self-similarity index which provides infor- paths. Therefore, pictures trying to explain self-similarity by
mation on the investigated time series structure, correlationsome zooming in or out on one sample path, are by definition
and fractal properties. For example, the Brownian motion isnisleading. Why? In contrast to the deterministic self-
self-similar with H=1/2; it has nomemory and its incre- similarity, the self-similarity of stochastic processes does not
ments have finite variance. mean that the same picture repeats itself exactly as we go

It is well known that if a process has purely random in-closer. It is rather the general impression that remains the
crements with infinite variance then the process can be selsame. A convenient mathematical tool to observe self-
similar with index of self-similarity different from 1/2. An similarity is provided by so-called quantile ling25].
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Many of the interesting self-similar processes have sta- H * Hel/e He/e
tionary increments. A procegX(t)}~, is said to have sta- Z,(t) = f [((t-—wiy = (- 7]dZ(w),  (6)
tionary increments if for anyp>0, -

d where Z,(u) is a symmetric Lévya-stable motion(LSM)
[X(t+b) = X(b)]=[X(t) = X(0)]. ©) [25,37. The integral is well defined for @H<1 and 0
<a<2 as a weighted average of the Lévy stable motion
B. Fractional Brownian motion Z,(u) over the infinite past with the weight given by the
) ) ) above integral kernel denoted Ilhyu).
~ The fractional Brownian motiofFBM) {By(t)}=o has the The proces&'(t) is H-self-similar and has stationary in-
integral representation crementg40]. Let us observe that-self-similarity follows

o from the above integral representation and the fact that the
By(t) = f [(t-wH Y2 - (- uHY2dB(u), (4)  kernelf(u) is d-self-similar withd=H—-1/a, when the inte-
—o grator Z,(u) is 1/a-self-similar. This implies the following

. . ) important relation:
wherex,=maxx,0) andB(u) is a Brownian motior{BM). It

is H-self-similar with stationary increments and it is the only

Gaussian process with such properties ferl@<1 [37]. H :d+1. (7)
The classic Brownian motio(t), used by Einstein and @

Smoluchowski, is simply a special case of the fractional The representatiof6) of FLSM is similar to the represen-
Brownian motion wherH=1/2. tation (4) of the fractional Brownian motion. Therefore,

_In modeling of long-memory phenomena, the stationaryg| sm reduces to the fractional Brownian motion if one sets
increments oH-self-similar processes are of special interest,, = \wnen we putH=1/a we obtain the Lévya-stable
since anyH-self-similar process with stationary increments yotion which is an extension of the Brownian motion to the
{X(O}ier induces a stationary sequenté};.;, whereY; . stable case. We note, that contrary to the Gaussian case
=X(j+1-X(); j=...,-1,0,1,... . Thesequence| Corre-  (y=2) the Lévy a-stable motion(0< a<2) is not the only
sponding to the fractional Brownian motion is called frac- 1/q-self-similar Lévya-stable process with stationary incre-
tional Gaussian nois¢~GN) [26]. It is called a standard ments(this is true for 0<a<1 only).
fractional Gaussian noise if Vér=1 for everyj e 7. The increment process corresponding to the fractional
The fractional Gaussian noise has some remarkable prop-syy stable process is called a fractional stable nGiSN).
erties. If H=1/2, then its autocovariance functionk) By analogy with the case=2, we say that FSN has the
=R(0,k)=0 for k+#0 and hence it is the sequence of inde-|ong-range dependence whet>1/« and the negative de-
pendent identically distributed.i.d.) Gaussian random vari- pendence wheR <1/a. If H=1/a the increments of FLSM
ables. The situation is quite different wheh#1/2, namely  are i.i.d. symmetrica-stable variables. The asymptotic de-
the Yj's are dependent and the time series has the autocovgendence structure of the fractional Brownian noise is stud-

riance function of the form ied by virtue of the autocovariance function. Since in the
oHoo a-stable case the second moment is infinite one has to use
r(k) ~ vary;H(2H - D)k™%,  ask — . (5)  another measure of dependence, e.g., the codifferefjte

. . which equals the covariance when=2 [37]. For most, but
The autocovariance functiarfk) tends to 0 ak— c for all not all \Slalues ofx andH. = decreases[a,é"*‘“ for large j
0<H<1, but when 1/2<H<1 it tends to zero so slowly s s analogous to the behavior of the autocovariance func-
that the sun®,__.r(k) diverges. We say that in this case the (jo, in the Gaussian cage=2. Finally, we note that there is

increment process exhibits long-memory or “long-range dey,q long-range dependence whexr @< 1 because is con-
pendencel30]. Moreover, formula5) by the Wiener Taub-  gtrained to lie in the interval0, 1).

erian theoremisee[39], Chap. V 3 implies that the spectral  For simulations of the above self-similar processes we
density h(A) of the stationary process FGN has a pole alheeq specific computer generators. Two of such algorithms
zero. A phenomenon often referred to as f'hbise. for generation of fractional Gaussian noi$&GN) and frac-

If 0 <H<1/2, thenZ,__.r(k)=0 and the spectral density tional stable noisgFSN) are described in detail ifi26]
tends to zero ak\|— 0. We say in that case that the sequenceand[43].
displays a short-memory. Furthermore, as the coefficient
H(2H-1) is negative, the(j)’s are negative for all largg a
behavior referred to as “negative dependence.” Ill. TESTING OF SELF-SIMILARITY

In this section we use the absolute va(@¥ ) method for
estimation of the self-similarity indeX. The method is

The most commonly used extension of the fractionalbased on calculating mean value from the process realiza-
Brownian motion to thex-stable case is the fractional Lévy tions and studying its scaling with a sample lenf#i]. A
stable motion(FLSM) [40-42. The processZ!(t)};.r is  time series of lengtN one divides into subseries of length
defined by the following integral representation and calculates the first absolute moment

C. Fractional Lévy stable motion
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1 N/m 1 T T T T
M = —> |XM(K) - (X)), 8 I ]
AV N/mk%' (k) = (X)| (8) 08
0.6 1

whereX™ is anmth subseries andX) is the overall series
mean. 04

The obtained statistics scales with the window size and
the absolute value exponefitequalsHy, —1, whereH,y is
the self-similarity index 0

MU oc mftav1, 9 0
04f

Notice, that this estimator gives information on the self- ~
similarity index. If the variance of the time series is infinite -o0.6f
the estimator also works correctly, so it can be used to inves. |
tigate, for example, the Lévy stable motion. ’
To investigate memory of a studied process we apply the -1
estimator to an original data set obtained as a realization o
the process given by E@6) and to the surrogate data. Sur- 1 - - - -
rogate data refers to data that preserve certain linear statisti , o|
properties of the experimental time series, without the deter-
ministic componenf44]. It is commonly used to determine 06
the memory of a process by means of the local dispersior , I
and nonlinear prediction methods. The surrogate data can b
obtained by several different way44,45. In this paper we  02f
obtain it by random shuffling of the original data positions.
According to[26] we have the following BMVW com-
puter test. -02
If the self-similarity results from the process memory only _,,
(e.g., fractional Brownian motigrthen the values of the
applied estimator should change to 1/2 for the surrogate=0-6r

0 2000 4000 6000 8000 10000

data independently on the initial values. _08

If the self-similarity results only from the process’ incre-

ments infinite variancée.g., Lévy stable motiorthen the 1o 2000 4000 5000 3000 10000
estimator values should be the same for the original and

surrogate data. FIG. 1. A sample path of the fractional Lévy stable noise for

The self-similarity resulting from both origin@.g., frac-  (top panel H=0.6 anda=1/1.8, and(bottom panel H=0.9 and
tional Lévy stable motionshould be observed as a partial @=1/1.8.
change in the estimators values.

I . . fractional Lévy stable motion and Lévy motion are markedly
In order to justify the above test the behavior of the Ezsn'dif'ferent. In the case of the fractional Lévy stable motion

mator was investigated on simulated .t|me SEres. The Calcu\ialues of the estimator are close to 1/1.8—40.44, cf. plus
lations were performed for two cases: fractional Lévy stable

motion fora=1.8 and the self-similarity indet taking val- signs and dotted line in Fig. 2. The values obtained for the

i . Lévy stable motion do not change after shuffling and are
:J::p;{gﬁ%ir?é]?%rgﬁi’ogflpgt:;%'lel :(igg:stsfﬂszrgrgeagztni gfgt):or- pretty close to the value 1 subtracted from the self-similarity
and Lévy stable motion with the self-similarity indéktak- index valueH, cf. plus signs and dashed line in Fig. 2.
ing values{0.6, 0.7, 0.8, 0.p The index of stabilityx in the
latter case ranges from=10/9 toa=5/3.

We note that in order to simulate fractional Lévy stable |n this section we exploit the connection between theory
motion we directly applied its integral representation givenof self-similar Lévy stable processes and ergodic theory of
by Eq. (18) for t=1/100,2/100, ...,9999/100,1000000  nonsingular flows. We use the integral representation ¢ an

obse_rvation)s The fractional Lévy stable motion was also se|f-similar (S§ symmetric a-stable(SaS) process{Xg-o
considered and simulated jA3]. of the form

The AV estimator calculated for every given case of the
fractional Lévy stable motion and Lévy motion is presented _
in Fig. 2. The AV estimator gives information on both, the X= Lft(u)dza(u)’ t>0,
memory and distribution of the investigated process. The
values of the estimator should form the lileeH-1. It is  where the kernelf,(u)=t"[a,(u)f(¢(u))Im(u) is repre-
true in both studied cases, cf. circles and dashed lines in Figented by means of the tools used in ergodic théds}.
2. The estimator values for the surrogate data obtained frorhlere {¢}~o is @ nonsingular multiplicative flow on the

IV. RELATION TO THE BRW DECOMPOSITION

(10
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d
KXit=o :{XED}DO + {ng)}po + {X§3)}t>0, (12
-0.1 5
= 7o where the first process on the right-hand side is a mixed
2 fractional motion(MFM), the second is harmonizable, and
% -0.2¢ ra 1 the third one is aH SS evanescent process.
] The Hopf decomposition in ergodic theory of the phase
g spaceS of the integral representatid0) into invariant parts
3 -o03f o 1 C and D, such that the flowe, is conservative orC and
§ dissipative onD, generates a decomposition {f},~, into
two independent & H SS processe@(tc}bo and {XP}DO'
-04r 8 1 The clasgX{};- o generated by conservative flows consists of
Ee + ¥ i harmonizable processe{xiz)}bo and evanescent processes
- , , , , {Xig)}bo. The proces$XtD}t>o is a MFM and one can choose
35 0.6 0.7 o8 0.9 1 a minimal representation c{b(tD}Do of the form(14) below.
Incle ol sell-similariy.f Furthermore{XP},-, is a fractional motior(FM) if and only
0 : . . . if {¢i}~o restricted taD is ergodic. This is a promising link
between the BRW decomposition of anwSH SS process
-0.05} 1 ! ; o i
and the theory of dynamical systems in statistical physics.
-0.1} - 1 The ergodic theory of &S stationary processes is presented
£ ol | in [25]. See alsd42] for the one-to-one correspondence be-
g tween &S self-similar and stationary processes.
% -0.2f ¢ 1 The simplesH SS SxS process is obtained from a kernel
% ik L | of the form
> "
£ -o3f 1
2 e
8 _ L . 1 S
£ -035 ft(s):tH‘”“f(—), t,s>0, (13
—04f 5 1 t
- ®
—0.45} 1
05 s . . . wheref is a-integrable with respect to the Lebesgue mea-
0.5 0.6 0.7 0.8 0.9 1

sure. A @S process with such representation is called the

fractional motion. A superposition of independent FM pro-
FIG. 2. Values of the AV exponemi=H,, -1 for the original ~ cesses of typél3) is called the mixed fractional motion and

time serieqcircle) and the surrogate datplus sign of (top pane) it has the form

the fractional Lévy stable noise affldottom panelthe Lévy stable

Index of self—similarity H

noise.

phase spacéS, u), {a}-o is a cocycle for this flow taking gi(w,u) :tH‘l’“g(w,H), t>0. (14
values in{-1, 1}, m=d(u(¢,))/du andf is a-integrable with t

respect tou [27]. We will give a few examples of FM and MFM processes.

The stochastic proces§ defined in Eq(10) can be inter-  \ye start fromd-dimensional case.
preted, similarly as in Sec. I, as a weighted average of the podel 1 Forf e Lo(RY), let
Lévy stable motionZ,(t) over the infinite past with the
weight given by the kernef,. For the exact definition we
refer the interested reader[t®5,37]. Let us point out that the

stochastic integral10) is equivalent to the diffusion without f(s) = tH—d/af<§)’ seRY t>0, (15)
drift (i.e., b=0) and with diffusion coefficien{o=f,); see t
Eqg. ().

The self-similarity property of the above integral with pa-
rameterH, follows directly from 1/-self-similarity of the andM be a %S random measure did with the Lebesgue

processZ,(t) and the following property of the kernel control measure. It is easy to check that aSSprocess
u {Xi}t=o with such representation I8 SS. We will show that
feU) = cH‘l’“ft<E>. (1)  {X}e0is @ MFM. Indeed, leW=S, be the unit sphere iRt

equipped with the uniform probability measureand let

It was demonstrated if27] that every &S self-similar ~ g(w,u)=(cqu®H¥*f(uw), (w,u) e §x(0,¢) where cq

process{X¢-o admits a unique BRW decomposition into =27%2/T'(d/2) is the surface area &. Using polar coordi-
three independent parts nates, we get for everg,, ...,a,eR, t;,... t;>0,

016113-5
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FIG. 3. The kernel of the integral representation(top leff) a log-fractional &S motion and(top right a fractional S motion for
H-1/a=0.1; (bottom lef) the real part of the kernel of the integral representation of the complex-valw8dh&rmonizable process for
H=0.8 andH-1/a=0.1 and(bottom righ}, the kernel of the integral representation of the evanescent process.

. Model 3 Let O<H<1, 0<a<2 andH#1/a. Put B
fd ‘E ajftj(s)| ds =H-1/a. Then a fractional 8 motion[49] {X/}- is de-
R

fined by the kernel
dag[ UWY [ 4
H f( t ) udur(dw) f(s) =1[s<0][(t-9)P-(-9P]+I[0<s<t](t—-9)”
@ (18)
H e (W’E>
We remark only that the Lamperti transformatipf2]
Comparing the kernel from the above example with theMaPs FM’s_onto moving average processes and MFM's o_nto
general form(10) we get thatS=RN\{0}, ¢(s)=t"1s, f4() mixed moving averaggd$0]. Considering above examples_ it
=f(s), and d(u(¢))/du=t". The following well-knownH seems that MFM’S appear more naturally.than FM’s. This is
SS processes are special cases of the above example, quite opposite to the relation between mixed and the usual

Model 2 Let 1< a<2 andH=1/a. Then a log-fractional moving averages. It is clear that a Lévy stable process may
SaS motion[48] {X.},—, is defined b&/ the kernel have many integral representations with different kernels de-
tt>0

fined on various measure spaces. However, we can identify
one property, common to all such representations, which

_Cd

H

which proves the claim.

duv(dw), (16)

(see Fig. 3, top right wherel[] stands for the indicator
function of thes-variable.

= log|t/s- 1] (17) characterizes MFM'’s. LefX}i~o be a &S H SS process
with an arbitrary representatiofl0). ThenX is a MFM if
(see Fig. 3, top lejt and only if
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bt blast was recorded with an accuracy of 1 min and the relative
f T f(9)*dt <o u-ae. (19 error of the energy measurement reads?1The total ana-
0 lyzed sample consists of moments and energy of 13 015
Observe first that this condition is equivalent to flares. A part of the time series is presented in Fig. 4.
[Z et y(s)|*dt<wu-a.e. By [47] and the Lamperti The seismic signal is a record of an electrical field of the
transformation this gives the result. Earth surface called SE&eismic Electric Signa[54]. The

The class generated by conservative flows consists of haflata were recorded on the 18th of April 1995 in Grevena-

cend. An H SS SS procesgX- is said to be harmoniz- Series consists of 2 201 observations covering about 37 min.
able if its kemel satisfies the conditionf(s)f1(s) T_hﬁ meflsuret:_ment_ erro:hreaédEsSlO rt]V/t km. Thﬁ’ data a:je espe-
=f, (5)f,(s) for t;,t,>0, see[27]. cially interesting since the SES activity usually precedes an
t,lA stgchastic lpr<2:‘)cess whose minimal representati) eartr;]quake{5/4]. The time series is p:jesde?ted n Fig. 4.

. . . . ; . The USD/CHF FX rate was recorded from 1985-05-20 to
contains a conservative flow without fixed points is called 991-04-12 with daily resolution. The data primarily comes

evanescent. This class is not well understood at present. T Bm a set of financial data released by Olsen & Associates
following result in[27] is useful to verify whether or not a y

process is evanescent. LBt}, be a SS H SS process for the Second International Conference on High Frequency

with an arbitrary representatiqd0). Then{XJ., is evanes Data in Finance, Zurich, April 1-3, 1998. These data sets are
: tt>0 ) i i i i
cent if and only if ufse S: [Zt-aH-1|f (s)|edt<}=0 and quotations of foreign currencies and metals available from

f £ (S)=F. (O ‘ _ international vendors like Reuters, Knight-Ridder and Teler-
mise Sy (9F1(5)=fi (), (9) for ty,t,>0}=0. ate. The analyzed time series consists of 1 480 observations
Finally we give examples of the harmonizable and evayuq the daily FX rate changes are presented in Fig. 4.

nescent processes. The procedure presented in Sec. ($ee alsd26]) was
Model 4 Let applied to the above time series. The obtained values of the
_explis) - 1 parameters are listed in Table I.
f(s) = tHis < |g|~(H- 1+ 1) (20) Comparing the values of the different estimators for the

original data series and for the surrogate data one can esti-
(see Fig. 3, bottom left It is easy to check that stochastic mate the components of the self-similarity index correspond-

process with such kernel is harmonizable. ing to the memory of the time serigsl) and to the tails
Model 5§ Let properties of the time series values distributie. The val-

" ues of the components are presented in Table Il. Let us ob-

fi(s) =1[0 < s < 1]t" cogmlog t + ), (21)  serve that only for the solar flares data the self-similarity

where||x| denotes the largest integer not exceedingsee results from both origins suggesting that proper model
Fig. 3, bottom right ThenX(t) defined by the above kernel Should be based on the fractional Lévy stable motion with
does not have a corresponding harmonizable nor mixed moy? ~ 0-86 anda~1.45, see BMW computer test in Sec. IIl.

ing average component, so provides an example of an eva- 't iS clearly seen that the procedure provides a decompo-
nescent component. sition of the self-similarity index into the two components

representing memory and the tails of the process; see for-
mula (7). Nevertheless, it is not clear how to apply the algo-
rithm for the integral kerne(11) estimation. The difficulty

The above formalism can be easily applied to determindnainly arises from a lack of any additional limitations for the
basic features of an empirical data series. Below we demortlass of functions to which can belong the kernel. So, one
strate this by studying four empirical time series recordedcannot reduce the problem of finding the kernel to a param-
from different physical systems: an ionic current flow €ter or parameters estimation. Instead, one has to deal with a
through a single channel in a biological membrane, an enfonparametric estimation problem. However, having dhe
ergy of solar flares, a seismic electric signal recorded duringnd « values one can already correctly classify the studied
seismic Earth activity, and FX rate daily returns. time series, identify the procegs(t) in the integral(10) and

The ionic current was recorded from cell attached patchegeduce the class of possible kernels. More studies are needed
of adult locust (Schistocerca gregajiaextensior tibiae to elucidate the recognition of the kernel.
muscle fibre§32,51,53. The potassium currerisee Fig. 4
through a high conductance locust potassium chafiBkl
channel was obtained by the patch clamp technique with
sampling frequency 10 kHz and at a voltage of 100 mV. The In this paper we demonstrate that all self-similar models
sample presents a time series, consisting of 250 000 pointiriven by Lévy stable noise are completely described by for-
and covering, therefore, 25 s of recording. The error of meamula (10) in the form of a stochastic integral with respect to
surements of ionic current is equal to 1 pA. the Lévy symmetric stable motion and a deterministic kernel

The solar flares energy data were recorded by UHURU;. The classical Hopf decomposition in ergodic theory im-
satellite. The captured energy was transmitted by X rayplies decompositiofil2) into three independent components:
emitted during blasts on a solar surface from the 1st of JanuMFM, harmonizable and evanescent. The first component
ary 1997 to the 31st of August 20083]. The time of the corresponds to conservative dynamics, when two others to

V. EMPIRICAL EVIDENCE

VI. CONCLUDING REMARKS
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FIG. 4. A part of patch clamp recording of the single BK channel ionic curfenpt lef); a part of solar flares energy time seriésp
right); seismic electric signal recorded on the 18th of April 1995 in Grevena-Kozani in Gfleeitem lef); and the USD/CHF FX rate daily
changes from 1985-05-20 to 1991-04t@ttom righy.

TABLE I. Values of the Hurst and DFA exponents and the self- dissipative dynamics. Next, we provide the five typical
similarity indexH,y for the original time series and the surrogate H-self-similar models and characterize the three possible

data for the four different data sets. components in the language of their deterministic kerfiels
On the level of observed physical time series this leads to
Data set Hurst DFA Hay a challenging open problem how to see the “shape” of the

self-similarity from the data? To be more precise, how to
determine the type of the model from the given time series
lonic current 0.84+0.08 0.89+0.07 0.88+0.08 data. Details of these ideas are, however, the subject of the

Original time series

Solar flares 0.69+0.05 0.68+0.07 0.86+0.06 current work and are beyond the scope of this paper. If one
SES 0.92+0.06 0.94+0.10 0.89+0.07 knows how to recognizg—:"the form of the kerrfelfrom the
EX rate 0.62+0.10 0.51£0.05 0.57+0.08 _data(by a shape_ recognition procedyréhen from our rgs_ult
e R R it follows that this time series corresponds to a specific part
Surrogate data of the BRW decomposition. For instance, MFM is identified
if and only if the kernelf; satisfies conditior{19).
lonic current 0.54£0.05 0.50£0.04 0.48+0.05 The main findings is that always a deterministic kernel
Solar flares 0.52+0.04 0.48+0.05 0.69+0.06 determines the index of self-similarityl via formula (11).
SES 0.56+0.07 0.48+0.07 0.49+0.07 This provides a catalog of all possible self-similar models for
EX rate 0.60+0.10 0.50+0.05 0.54+0.07 anomalous diffusion driven by Lévy stable noise. We also

study an explicit algorithm distinguishing between the ori-
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TABLE II. Values of the self-similarity index components using general formul&10). This is illustrated in Sec. V for
(d,a), and the type of modeling processes for the four analyzedour sets of empirical data recorded from different physical

time series. systems.
Data set d a Modeling process
lonic current  0.36+0.08 2.00£0.22 FBM ACKNOWLEDGMENTS
Solar flares 0.19+0.07 1.45+0.14 FLSM
SES 0.43+0.09 2.00+0.34 EBM We are grateful to Professor P. N. R. Usherwood and Dr.

I. Mellor from the University of Nottingham{UK), and to

Dr. Z. Siwy from the Silesian University of Technologio-
land) for providing us with the experimental data of ion cur-
gins of the self-similarity of a given time series on the baserent through high conductance locust potassium channel. We
of the BMW? computer tesf26]. It turns out that it suffices are grateful to Professor P. Varotsos from the University of
to compare the behavior of AV estimatorldffor the original ~ Athens (Greece for providing us with the SES data. The
time series and the surrogate data. We provide here a thetgsearch was partially done with the ESF Programme
retical justification of this algorithm for self-similar models STOCHDYN.

FX rate 0.00+0.05 1.80+0.20 LSM or BM
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